RELATION AND MAPPINGS

Summary:

A relation between members of the given set can be illustrated using a papygram

EXAMPLES:

- 1. Draw a papygram illustrating the relation "is a prime factor of" in the set {1, 2, 3, 4, 5, 6, 8, 12, 30}
- 2. Draw a papygram showing the relation "is a multiple of" in the set {42, 28, 21, 14, 7}
- 3. Given that $T = \{2, 5, 6, 8, 9, 10, 12, 13\}$, illustrate on papygrams the relations: (i) "Greater than by 3" (ii) "Factor of"

FUNCTIONS

Summary:

- 1. A function f(x) is a formula in terms of x.
- 2. A function f that maps x on to 3x + 1 can either be written as follows:

$$(i) f(x) = 3x + 1$$

(ii)
$$f: x \rightarrow 3x + 1$$

(iii)
$$x \rightarrow 3x + 1$$

3. (i) A mapping diagram is an arrow diagram with a set of values of \mathbf{x} and that

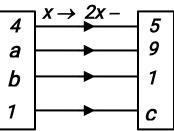
of f(x).

- (ii) A set of values of x is called The Domain
- (iii) A set of values of f(x) is called The Range
- **4.** The inverse of a function f(x) is denoted by $f^{-1}(x)$. This function maps the

range back on to the domain.

5. A function is undefined or meaningless if its denominator part is equal to zero.

6. (i) A composite function fg(x) is a combination of two functions f(x) and g(x).


(ii) A composite function $f^2(x)$ is the same as ff(x).

EXAMPLES:

- 1. (i) Determine the range corresponding to the domain $\{0, 1, 2, 3\}$ for the mapping f(x) = 3x + 1.
 - (ii) Represent the mapping in (i) above on an arrow diagram.
- **2.** (i) Determine the range corresponding to the domain $\{-3, -2, 0, 1, 2, 3\}$ for the

mapping
$$x \rightarrow x^2 + 1$$
.

- (ii) Represent the mapping in (i) above on an arrow diagram.
- 3. Find the unknown values in the arrow diagram for the mapping $x \rightarrow 2x 3$.

- **4.** Given the function $f(x) = \frac{10x}{x^2 4}$, find:
 - (i) f(3)

- (ii) f(6)
- (iii) the values of x for which f(x) is undefined
- (iv) the values of x for which f(x) = 6
- 5. Given the function $f(x) = \frac{2x}{3x^2 10x 8}$, find:
 - (i) f(2)
 - (ii) f(-1)
 - (iii) the values of x for which f(x) is undefined
- 6. Given that f(x) = 3x + 5, $g(x) = \frac{2}{2x 6}$ and $h(x) = \frac{4 x^2}{x^2 + 3}$, find:
 - (i) $f^{-1}(x)$, and hence $f^{-1}(-1)$
 - (ii) $g^{-1}(x)$, and hence $g^{-1}(-2)$
 - (iii) $h^{-1}(x)$, and hence $h^{-1}(0)$
- 7. Given that f(x) = ax 7 and f(8) = 17, find:
 - (i) the value of a
 - (ii) f(4)
 - (ii) $f^{-1}(x)$, hence obtain $f^{-1}(8)$.
- 8. Given that f(x) = a + bx, f(1) = 8 and f(-1) = 2, find:
 - (i) the values of **a** and **b**

- (ii) f(-2)
- (iii) f(5)
- (iv) the value of c for which f(c) = -7
- (v) $f^{-1}(x)$
- (vi) $f^{-1}(-7)$
- **10.** Given that f(x) = ax + 9 and $f^{-1}(13) = 1$, find:
 - (i) the value of a
 - (ii) $f^{-1}(1)$
- **11.** Given that f(x) = px + 7 and $g^{-1}(x) = \frac{5-2x}{3}$, find:
 - (i) g(x)
 - (ii) the value of p for which g(2x 3) = f(x)
- **12.** Given that $g^{-1}(x) = \frac{1+x}{x}$, find g(3).
- 13. Given that $f(x) = \frac{2}{x+2} + \frac{8x+4}{x^2-4}$, express f(x) in the form

$$\frac{ax}{x^2 + b}$$

Hence find:

(i) f(3)

(ii) the values of x for which f(x) is undefined

14. Given that
$$f(x) = \frac{2}{3x+2} + \frac{5x+3}{9x^2-4}$$
, express $f(x)$ in the form
$$\frac{ax+b}{cx^2+d}$$
.

Hence find:

- (i) f(2)
- (ii) the values of x for which f(x) is undefined
- **15.** Given that $f(x) = x^2 12$ and g(x) = 2x 5, find:
 - (i) an expression for gf(x) and hence evaluate gf(4)
 - (ii) an expression for fg(x) and hence evaluate fg(2)
 - (iii) the values of x for which gf(x) = fg(x)
 - (iv) an expression for gg(x) and hence evaluate gg(2)
 - (v) an expression for ff(x) and hence evaluate ff(-3)
- **16**. Given that f(x) = 5x 7, find g(x) for which:
 - (i) fg(x) = 10x + 8, hence evaluate g(4)
 - (ii) $fg(x) = 20 x^2 37$, hence evaluate g(2)
- **17.** Given that $f(x) = x^2 7$ and g(x) = x + 1, find the values of **x** for which

$$fg(x) + gf(x) = 0.$$

18. Given that $f(x) = \frac{x+3}{2}$ and $g(x) = \frac{1-2x}{5}$, find the values of x for which $fg(x) = \frac{8x^2+24x+9}{10}$.

19. Given that $f(x) = \frac{2}{2x - 6}$ and $g(x) = x^2 - 1$, find the values of **x** for which fg(x) is undefined

EER:

- 1. Given that $f(x) = \frac{14x}{x^2 9}$, find:
 - (i) f(4)
 - (ii) the values of x for which f(x) is undefined.
- 2. (i) Determine the range corresponding to the domain {4, 9, 16} for the mapping

$$x \rightarrow 10 - 2\sqrt{x}$$

- (ii) Represent the mapping in (i) above on an arrow diagram.
- 3. Express $x^2 + 7x + 12$ in the form $(x + a)^2 + b$. Hence solve the equation

$$x^2 + 7x + 12 = 0.$$

- 4. Given that f(x) = 2x + 4 and g(x) = x + 5, find fg(x) and hence evaluate fg(4)
- **5.** Given that $f(x) = (x 3)^2$, find:
 - (i) f(5)
 - (ii) the values of x for which f(x) = 16.
- **6.** Given that f(x) = ax + 3 and f(5) = 33, find:
 - (i) the value of a
 - (ii) f(-2)
- 7. Given that $f(x) = ax^2 + b$, f(-2) = 3 and f(1) = -2, find:
 - (i) the values of **a** and **b**
 - (ii) f(4)
- **8**. Given that f(x) = 2x 5, find:
 - (i) f(-2)
 - (ii) $f^{-1}(x)$
- **9.** Given that f(x) = 3x 4, find $f^{-1}(5)$.
- **10.** Given that $f(x) = \frac{1}{2}(x+7)$ and g(x) = x(x-6), find the values of **x** for

which

which
$$f^{-1}(x) = g(x)$$
.

11. Given that
$$f(x) = \frac{2}{x+4} + \frac{4}{x-3} - \frac{4(x+4)}{x^2+x-12}$$
, express $f(x)$ in the

form
$$\frac{a}{x+b}$$
. Hence evaluate $f(-3)$

12. Given that
$$f(x) = \frac{7}{x+3} + \frac{7x+21}{x^2-9}$$
, express $f(x)$ in the form

$$\frac{ax}{x^2 + b}$$

Hence find:

(ii) the values of x for which f(x) is undefined

13. Given that
$$f(x) = ax^2 + bx$$
, $f(1) = 5$ and $f(2) = 14$, find:

- (i) the values of **a** and **b**
- (ii) f(3)

14. Express $x^2 + x - 12$ in the form $(x + a)^2 + b$. Hence solve the equation

$$x^2 + x - 12 = 0$$

15. Express $3x^2 + 4x - 4$ in the form $a(x + b)^2 + c$. Hence solve the

equation

$$3x^2 + 4x - 4 = 0.$$

- **16.** Given that $f(x) = \frac{3}{1-x^2}$, find the values of **x** for which f(x) = 4.
- 17. Given the function $f(x) = \frac{8x}{3x^2 + 9x 30}$, find:
 - (i) f(-1)
 - (ii) the values of x for which f(x) = 1
 - (iii) the values of x for which f(x) is undefined
- **18.** Given that $f^{-1}(x) = \frac{\beta x 2}{\beta + 4x}$ and f(2) = -4, find the value of β . Hence find

the value of x for which f(x) is undefined.